美国奥本大学副教授张新宇博士学术报告

【来源:有色金属重点实验室 | 发布日期: | 阅读次数: 】     【选择字号:
       应甘肃省有色金属化学与资源利用重点实验室、化学化工学院邀请,美国奥本大学副教授张新宇博士来我校进行学术交流并作学术报告,欢迎广大师生参加。
 
报告题目:Manufacturing and Applications of Multifunctional Nanocomposites
报  告  人:张新宇 副教授
报告时间:2017年5月27日16:00
报告地点:第二化学楼101学术报告厅
 
张新宇博士简介:
       1996年在天津大学获学士学位,1999年在天津大学获硕士学位,2005年于美国德州大学达拉斯分校获博士学位,师从2000年诺贝尔化学奖得主﹑世界著名化学家、导电聚合物研究领域主要创始人Alan G. MacDiarmid教授。2006年至2008年, 张新宇博士先后于美国德州大学达拉斯分校化学系和马萨诸塞大学罗威尔分校化工系任助理研究员;2008年8月至2013年8月,在美国奥本大学聚合物和纤维工程系任助理教授;2013年8月至2015年8月在美国奥本大学聚合物和纤维工程系任副教授;2015年8月至今,在美国奥本大学化学工程系任副教授。迄今在J. Am. Chem. Soc., Adv. Funct. Mater., Chem. Commun., MacromoleculesNanoscale等刊物上发表SCI论文50余篇,被引用2400多篇次。提交国际会议论文50多篇,在国际学术会议上做特邀报告30余次。先后承担美国联邦基金等科研项目13项。目前担任J. Am. Chem. Soc., Chem. Eur. J., Carbon, Macromolecules, Langmuir, Compos. Sci. Technol., Nanotechnology等20多种国际期刊的特邀审稿人以及美国自然科学基金评审委员会成员。
 
报告主要内容:
  Nanomaterials, such as carbon nanotubes (CNT), metal oxides, and polymers, possess superior mechanical, thermal and electrical properties, lead to broad applications in composite materials, smart structures, chemical sensors, energy storage and nano-electronic devices. However, the high cost and difficulty in getting large scale, high quality nanomaterials remain challenges. We are focusing on investigating methodologies in synthesizing bulk quantity nanomaterials/nanocomposites with multi-functionalities.
  In our research group, we demonstrated facile and affordable approaches for large quantity synthesis of nanostructured conducting polymers, nanocarbons and their nanocomposites with metal nanoparticles & metal oxides, which possess high potential for energy, corrosion protection and bio-applications, such as supercapacitors, bio-sensing and bio-imaging. These approaches, including self-assembly, microwave irradiation etc., are normally carried out at room temperature in air, making nanomaterial process more convenient and economical. For example, microwave initiated nanomaterial growth will take only 20-30 seconds under the microwave irradiation at room temperature in the air, no need of any inert gas protection, and additional feed stock gases, usually required in CVD approach.
  Demonstrated by the preliminary testing through Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) and other instruments, the microwave produced CNTs possess hollow centers, with the diameter ranging from 10-100 nanometers, and the length varies from several to tens of micrometers. With the trapped iron nanoparticles in CNTs, the materials could be used as MRI contrast agents. On another hand, the conducting polymer/metal particle nanocomposites, synthesized through self-assembly, demonstrated excellent energy related properties such as dielectric and energy storage properties, and ability of detecting glucose and ethanol, providing great opportunities in nanocomposite based energy materials and bio- and chemical sensors.